Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: evidence for agonist-specific trafficking of intracellular responses.
نویسندگان
چکیده
Cannabinoid receptors couple to both Gs and Gi proteins and can consequently stimulate or inhibit the formation of cAMP. To test whether there is specificity among cannabinoid receptor agonists in activating Gs- or Gi-coupled pathways, the potency and intrinsic activity of various cannabinoid receptor ligands in stimulating or inhibiting cAMP accumulation were quantified. The rank order of potencies of cannabinoid receptor agonists in increasing or inhibiting forskolin-stimulated cAMP accumulation, in CHO cells expressing hCB1 receptors, was identical (HU-210 > CP-55,940 > THC > WIN-55212-2 > anandamide). However, the activities of these agonists were different in the two assays with anandamide and CP-55,940 being markedly less efficacious in stimulating the accumulation of cAMP than in inhibiting its formation. Studies examining the effects of forskolin on cannabinoid receptor mediated stimulation of adenyly cyclase also revealed differences among agonists in as much as forskolin enhanced the potency of HU-210 and CP-55,940 by approximately 100-fold but, by contrast, had no effect on the potency of WIN-55212-2 or anandamide. Taken together these findings demonstrate marked differences among cannabinoid receptor agonists in their activation of intracellular transduction pathways. This provides support for the emerging concept of agonist-specific trafficking of cellular responses and further suggests strategies for developing receptor agonists with increased therapeutic utility.
منابع مشابه
Concomitant activation of adenylyl cyclase suppresses the opposite influences of CB(1) cannabinoid receptor agonists on tyrosine hydroxylase expression.
The CB(1) cannabinoid receptor shows complex interactions with intracellular signalling partners, and responses to cannabinoid ligands are likely to be influenced by concomitant inputs modifying the overall tone of signalling cascades. This appears even more relevant as we previously evidenced opposite regulations of tyrosine hydroxylase (TH) expression by the two common cannabinoid agonists HU...
متن کامل(-)-Delta9-tetrahydrocannabinol antagonizes the peripheral cannabinoid receptor-mediated inhibition of adenylyl cyclase.
(-)-Delta9-Tetrahydrocannabinol ((-)-Delta9-THC) is the major active psychotropic component of the marijuana plant, Cannabis sativa. The membrane proteins that have been found to bind this material or its derivatives have been called the cannabinoid receptors. Two GTP-binding protein-coupled cannabinoid receptors have been cloned. CB1 or the neuronal cannabinoid receptor is found mostly in neur...
متن کاملCannabinoid agonist signal transduction in rat brain: comparison of cannabinoid agonists in receptor binding, G-protein activation, and adenylyl cyclase inhibition.
To investigate differences in agonist affinity, potency, and efficacy across rat brain regions, five representative cannabinoid compounds were investigated in membranes from three different rat brain regions for their ability to maximally stimulate [(35)S]guanosine-5'-O-(3-thio)triphosphate (GTPgammaS) binding and bind to cannabinoid receptors (measured by inhibition of [(3)H]antagonist binding...
متن کاملLong-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum.
Cannabinoid CB(1) receptors in the cerebellum mediate the inhibitory effects of Delta(9)-tetrahydrocannabinol (THC) on motor coordination. Intracellular effects of CB(1) receptors include inhibition of adenylyl cyclase via activation of G(i/o) proteins. There is evidence for the convergence of other neuronal receptors, such as adenosine A(1) and GABA(B), with the cannabinoid system on this sign...
متن کاملAgonist-directed trafficking of response by endocannabinoids acting at CB2 receptors.
This study examined the ability of the endocannabinoids 2-arachidonoyl glycerol (2-AG) and noladin ether as well as the synthetic cannabinoid CP-55,940 [(-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl) cyclohexanol] to regulate three intracellular effectors via CB2 receptors in transfected Chinese hamster ovary cells. Although the three agonists regulate all effector...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 287 3 شماره
صفحات -
تاریخ انتشار 1998